当前位置:网站首页> 知识科普>正文

求导公式运算法则是什么?

发布于:2020-11-20 10:13:30发布者:天晴网友

运算法则是:加(减)法则,[f(x)+g(x)]'=f(x)'+g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

导数也叫导函数值,又名微商,是微积分中的重要基础概念。由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。求导运算法则是:加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x?f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。

相关科普精选+更多
  • 极限的运算法则是什么?

    极限的运算法则是什么?

    运算法则是:设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε(不论其多么小),都?N0,使不等式|xn-a|ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称

  • 指数函数运算法则是什么?

    指数函数运算法则是什么?

    运算法则是同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每一个因式分别乘方。 指数函数是重要的基本

  • 相关系数r的计算公式是什么?

    相关系数r的计算公式是什么?

    相关系数定义式为:若Y=a+bX,则有:令E(X) = μ,D(X) = σ,则E(Y) = bμ + a,D(Y) = bσ,E(XY) = E(aX + bX) = aμ + b(σ + μ),Cov(X,Y) = E(XY) ? E(X)E(Y) = bσ。 相关系数是最早由统计学家卡尔·皮尔逊设计

  • 指数函数求导公式是什么?

    指数函数求导公式是什么?

    (a^x)'=(a^x)(lna) 指数函数求导公式:(a^x)'=(a^x)(lna)。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。 指数函数求导公式:(a^x)=(a^x)(lna)。指数函数

  • 初中数学三角函数公式有哪些?

    初中数学三角函数公式有哪些?

    三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。三角函数的公式有半角公式sin(A/2)=±√((1-cosA)/2)、倍角公式

  • 三角函数的诱导公式有哪些?

    三角函数的诱导公式有哪些?

    三角函数的诱导公式:公式—∶终边相同的角的同—三角函数的值相等、公式二∶T÷α的三角函数值与α的三角函数值之间的关系、公式三:任意角α与-α的三角函数值之间的关系、公式四

科普点评